Transfer Learning Based Fault Diagnosis with Missing Data Due to Multi-Rate Sampling
نویسندگان
چکیده
منابع مشابه
Fault Diagnosis with Progressive Symptoms Based on Multi-Agent Approach
The paper is devoted to fault diagnosis problems using fuzzy decision making. We investigate dynamic diagnostic systems which can be represented by symptom-fault rule bases. The main question to be answered is what faults produce observable symptoms in the first moments of their appearance. To solve this task we propose to use a set of agents for making fuzzy hypothesis about symptoms and to so...
متن کاملKernel-Based Multi-Imputation for Missing Data
A Kernel-Based Nonparametric Multiple imputation method is proposed under MAR (Missing at Random) and MCAR (Missing Completely at Random) missing mechanisms in nonparametric regression settings. We experimentally evaluate our approach, and demonstrate that our imputation performs better than the well-known NORM algorithm.
متن کاملFacial action unit recognition under incomplete data based on multi-label learning with missing labels
Facial action unit (AU) recognition has been applied in a wild range of fields, and has attracted great attention in the past two decades. Most existing works on AU recognition assumed that the complete label assignment for each training image is available, which is often not the case in practice. Labeling AU is expensive and time consuming process. Moreover, due to the AU ambiguity and subject...
متن کاملFault Diagnosis and Prognosis Based on Lebesgue Sampling
Traditional fault diagnosis and prognosis (FDP) approaches are based on periodic sampling, i.e. samples are taken and algorithms are executed both in a periodic manner. As the volume of sensor data and complexity of algorithms keep increasing, the bottleneck of FDP is mainly the limited computational resources, which is especially true for distributed applications where FDP functions are deploy...
متن کاملDEA with Missing Data: An Interval Data Assignment Approach
In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2019
ISSN: 1424-8220
DOI: 10.3390/s19081826